圖書標籤: 機器學習 MachineLearning 數據挖掘 python 人工智能 Python 計算機科學 算法
发表于2024-06-15
Machine Learning in Action pdf epub mobi txt 電子書 下載 2024
It's been said that data is the new "dirt"—the raw material from which and on which you build the structures of the modern world. And like dirt, data can seem like a limitless, undifferentiated mass. The ability to take raw data, access it, filter it, process it, visualize it, understand it, and communicate it to others is possibly the most essential business problem for the coming decades.
"Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. By implementing the core algorithms of statistical data processing, data analysis, and data visualization as reusable computer code, you can scale your capacity for data analysis well beyond the capabilities of individual knowledge workers.
Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, you'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.
As you work through the numerous examples, you'll explore key topics like classification, numeric prediction, and clustering. Along the way, you'll be introduced to important established algorithms, such as Apriori, through which you identify association patterns in large datasets and Adaboost, a meta-algorithm that can increase the efficiency of many machine learning tasks.
Peter Harrington holds Bachelors and Masters Degrees in Electrical Engineering. He worked for Intel Corporation for seven years in California and China. Peter holds five US patents and his work has been published in three academic journals. He is currently the chief scientist for Zillabyte Inc. Peter spends his free time competing in programming competitions, and building 3D printers.
書中介紹瞭“十大機器學習算法”中的八種,雖然不深入但是講解清楚容易理解和上手,是本佳作。從覆蓋麵上來看沒涉及到隨機森林算法和神經網絡是一個小遺憾。
評分哇FP growth簡直美
評分是本好書,有些章節還看的不是最明白。值得反復閱讀
評分一般般
評分讀它是為瞭熟悉Python語言;內容是在不敢恭維。
人工智能的脉络 机器学习是人工智能的一个分支。 人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。 机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。 从学习方式来讲,机器学习包括...
評分1. 这本书的价值是提供了一系列有趣的「实验作业」和「对应的数据」,以及乱七八糟的 Python 代码,迫使读者在同样数据集上自己写一个更好的。 2. 作者的 Python 代码写得真的真的很渣。 3. 作者的 SVM 写错了,不是 Platt 的原始 SMO 算法,里面的 error cache 形同虚设。 ...
評分1. 这本书的价值是提供了一系列有趣的「实验作业」和「对应的数据」,以及乱七八糟的 Python 代码,迫使读者在同样数据集上自己写一个更好的。 2. 作者的 Python 代码写得真的真的很渣。 3. 作者的 SVM 写错了,不是 Platt 的原始 SMO 算法,里面的 error cache 形同虚设。 ...
評分理论没讲太明白,直接上算法,甚至还有公式缺失,代码不敢恭维 就像大家说的一样 先看看线性代数、概率论、统计学再来看看这书吧 我这10多年 php、java、c#、js通吃,本想python应该不难,竟然代码部分有东西看不懂了,不得不拿起本python的书对着看...
評分机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。 本书第一部分主要介绍机器学习基础,以...
Machine Learning in Action pdf epub mobi txt 電子書 下載 2024