圖書標籤: 數據挖掘 計算機 機器學習 Data Coursera CS 數據分析 軟件工程
发表于2024-06-23
Mining of Massive Datasets pdf epub mobi txt 電子書 下載 2024
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets and clustering. This second edition includes new and extended coverage on social networks, machine learning and dimensionality reduction.
Jure Leskovec is Assistant Professor of Computer Science at Stanford University. His research focuses on mining large social and information networks. Problems he investigates are motivated by large scale data, the Web and on-line media. This research has won several awards including a Microsoft Research Faculty Fellowship, the Alfred P. Sloan Fellowship, Okawa Foundation Fellowship, and numerous best paper awards. His research has also been featured in popular press outlets such as the New York Times, the Wall Street Journal, the Washington Post, MIT Technology Review, NBC, BBC, CBC and Wired. Leskovec has also authored the Stanford Network Analysis Platform (SNAP, http://snap.stanford.edu), a general purpose network analysis and graph mining library that easily scales to massive networks with hundreds of millions of nodes and billions of edges. You can follow him on Twitter at @jure.
bug非常之多, 還找不到地方提交, 讀起來極度痛苦, 前看後忘, 也許裏麵的算法本質上就是這樣, bottom line至少近15年最新的論文成果被這麼串講一下, 本科生也能看懂
評分行文很流暢,看到下麵很多人說翻譯的問題,由此推薦原版。配閤網課還是挺淺顯的,例子舉得也挺多,自學也可以。步驟寫的也很細,有條件完全可以照著碼,不晦澀,小白很喜歡。
評分下學期課程參考textbook,聽說professor還不錯,打算好好學一下這門課
評分花費6個月時間,斷斷續續看完,哈希和近似的想法真是開闊瞭眼界。第一迴看比較急促,此書值得反復看,多實踐。
評分內容不錯,但作為技術嚮的書有些浮於錶麵。
从总体安排来看,书的结构还是不错的。没看过英文的,但是中文版的行文真的不好,磕磕绊绊看了一半以后实在是没有兴趣看后面的了。 之前了解的pagerank看了以后了解了,之前不了解的adwords还是不了解,
評分并非传统的”数据挖掘”教材,更像是,“数据挖掘”在互联网的应用场景,所遇到的问题(数据量大)和解决方案; 不过老实说,这本书挺不好懂的。 大概 get 了几个不错的思想: 思想-1:务必充分利用数据的”稀疏性”,如数据充分稀疏时,可以利用 HASH 将数据“聚合”成“有效...
評分看到好多人说这本书是大纲,是目录,没啥内容,讲的浅。 那就对了。 本书是Stanford CS246课程MMDS使用的讲义,还有配套的Slides和HW,所以观看本书请配套课程进行学习,同时coursera上也有配套的课程。 See more detail: http://www.mmds.org/
評分这本书其实挺好的,但是真得看英文版。 这是我们上课的参考书之一,英文版有的地方没看懂,就打算找个中文版来看。看了中文版发现,这个翻译的水平基本是跟我大四,研一给老师翻译文章的水平一样的,可以看出这本书应该是找学生翻译的,而且是对专业领域还了解不深的学生翻译的...
評分我真的不能忍受一帮子没读过此书,没写过代码,没搞过大数据的外行人在这边乱喷这本书。对豆瓣这本书的评价实在是太失望了。 这是我读到的第一本真正讲“大数据”思路的书。 面对海量数据的时候,我们的软件架构也会跟着发生变化。当你的数据量在内存里放不下的时候,你就得考...
Mining of Massive Datasets pdf epub mobi txt 電子書 下載 2024